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performed upon the observations of visibility and the cloud height variables.
The best forecasts were obtained when six seven-parameter MVAR models were used.
Each model produces a forecast for a particular variahle, using the observations .
at the seven stations as parameters. The variables that can be forecast best
are temperature and the u- and v-components of the wind with about 95, 75, and
60 percent of the variance, respectively, explained by the model. From 45 to
70 percent of the variance is explained by the model for visibility while from
30 to 60 percent is explained for the cloud height variables. Finally, data
from observations collected in 1976 were used in testing the MVAR models, and
the error statistics from these actual forecasts agreed with theory.
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1. Introduction

The purpose of this research is to develop a multivariate autore-
gressive (MVAR) climatological model to be used for short-term forecasting
(3-12 hours) of various atmospheric variables over a limited area in a
tactical situacion. The atmospheric variables to be forecast are temperature,
visibility, ceiling height, height of the first cloud layer, and the u- and
v-components of the wind. The tactical situation facing the forecaster is
this: all of his communications are cut off and he must, using only a small
computer with limited storage area, make 3-hourly forecasts of the afore-
mentioned variables out to 12 hours over an area on the order of 100 km
square. Using an MVAR model the forecaster can not only make the necessary
forecasts, but confidence intervals about the forecast values can also be
computed to aid in any decision-making processes based on these forecasts.

In the next section a theoretical description of an MVAR forecast
model is presented. In such a model the forecast value of a variable
(predictand) is assumed to be a function of present and past observations of
that variable as well as other predictor variables. The relationships
between the predictand and the predictors are carried within the coefficient
matrices of the model which are determined from the past history of observations.
Embedded within these coefficient matrices will be the effects of compiex
terrain upon the inter-relationships among the predictand and predictors.

The data used in this study consisted of five years of 3-hourly
observations of the six variables to be predicted as wellas one predictor variable,
the dewpoint temperature, for the following north German stations: Hannover,
Bremen, Braunschweiqg, Boizenburg, Magdeburg, Weissen, and Wernigerode. In

Section 3 the preliminary data analysis is described in which the distribution

and various statistical properties of the variables were determined. Ffrom
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the re<ults of this analysis it was decided that the c'oud heigh!
ibitity variables be transformed in such a way that the variorce pre oo
during low visibility and ceiling conditions be emphasized so tha'
conditions could be better forecast.

Finally, in Section 4 various MVAR forecast models wirr
determined using the first three vears of data (1972-1974%. W:*-
to the 1imited data stcrage available to the forecaster it wa. o
the final models could only utiiize values of the predicter. ‘ot
period preceding the forecast time. It was found that under th t.
constraints the best forecasts could be obtained using six 7-parameter
MVAR models. Each model produces a forecast for a particular variab -~ 5 -
the observations at the seven stations as parameters. 7The variab'c.
one can theoretically expect to forecast best are temperature and tm

and v-components of the wind with about 245, 75 and 60 percent of the

variance, resoectively, explained by the model. The percent variance cno
expect to explain ranges from about 45 to 70 for visibility and from 1" ! ¥
30 to 60 for the cloud height variables. Usinu the data from 1976 tre M’ y
models were tested and the error statistics from these actual forecasts wrr

found to agree quite well with theory.




2. Multivariate Autoregressive Forecast Model

In this section the theory behind a multivariate autcregressive
(MVAR) forecast model will be outlined. Suppose that one has collected m
time series consisting of n observations each for m different variables.
Further assume that the value of the sample mean has been subtracted from
each of these observations. Using these observations one would like to
develop a forecast model such that future values for m < mof these
variables may be predicted, given the present and a certain number of past
values of these varjables. For a particular time i the observations for *he
m variables are denoted by the m-dimensional column vector, X;, where the
first m; elements of X; belong to the m; time series to be predicted while
the last m - m; belong to those series to be used to aid in the forecast.

The p-th order MVAR model is:

X-i + A1X.i_1 + ...+ ApX.i-p = Z-' (1)

where the A's aremx mcoefficient matrices and Z; is an m-dimensional white
noise column vector. Such a model would use the present observations (X;_;)
and p-1 past observations in order to predict the values of the variables
one interval in the future (Xi)' The variance of the white noise process
(Zi) represents the one-step prediction error variance of forecasts made
with this model. Two things must be determined,using the collection of n
observation vectors, before an MVAR forecast model can be developed. First,
the proper order model must be selected and then the coefficient matrices
for that order model must be computed.

The procedure outlined in this section is the multivariate general-
ization given by Wnittle (1963) of the recursive method developed by Durbin

(1960) for the fitting of univariate autoregressive models of successively

-~




increasing order. Except for the inclusion of the Akaike FPE criterion

(Akaike, 1971), it is identical to that presented by Joneg‘(1964). The
Akaike FPE parameter is an estimator of the one-step prediction error of
the MVAR process. The use of the FPE criterion permits one to find the
order model with the smallest one-step prediction error. The analysic
procedure can be described simply: first, L + 1 MVAR models whose order
successively increase from zero tc L are fitted to the n m-dimensior
observation vectors using the recursive method to be detailed below;

for each order model a value of the Akaike FPE parameter is computec, an.
finally, an MVAR model whose order is that for which the minimum FPE w>s
found is fitted to the data using the same recursive method. This is ine
model that one would use for prediction.

The first step in the analysis method is the calculation of the

lag sums
n
= z - = 1
Gp i=p+1 X'ixi-D’ p=0,1,2,...,L,
G_p = Gp

where GB denotes the transpose of the m x m matrix G In the following

p*
equations the p-th order residual matrices for the forward and backward
autoregressions are denoted by Sp and §b, respectively. The k-th coeffi-
cient matrices for the p-th order forward and backward autoregressions are
denoted by AE and Kﬁ, respectively. The determinant of the m; x my sub-

matrix in the uoper left-hand corner of S is denoted by [Sp,mq!.

Y
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Thus, if one had found that FPEk had beern a minimum and had fitted at k-th

order MVAR model to the data, the prediction for X; given X;_-, ..., X;_y

would be

K
X =-Ap Xy




At this point the values of the sample means for the variables to be predicted
would be added back to the X. vector to give the fina) prediction value for
each variable.

Finally, one can determine the quality of the predictions from such
a model by computing the prediction error covariance matrices. For a k-th

order model the one-step prediction error covariance matrix is

Successive predictions can be made using (2) by merely renlacing chser.. -
values by predictions as one steps further into the future. The fo low'rc
recursion is used to find the i-step prediction error covariance matrir,

Vj, when using repeated predictions:

81 = - A1
= - . . . \
B (Aj + ByAjp + oo * By g AL
and
J 2 yi-l _ 1o
Vv v + BJ_l v BJ._1 .

Once this matrix has been obtained, its main diagonal consists of the error i
variances for the variables to be predicted. These can then be used tc

determine confidence intervals to be placed about the forecast values.




3. Preliminary Data Analysis

Before an attempt was made to determine any MVAR mode's, 2 pre-
1iminary data analysis was performed using the 3-hourly observatinns
(00Z, 03z, etc.) collected during 1972-1675 for the fo'lowing statiors:
Hannover, Bremen, Braunschweig, Boizenburg, Magdeburg, Weissen, and
Wernigerode. First, the distributions of the six variable- ¢ Le oredictec
(temperature, u- and v-compcnents of the wind, visibivity, ceiling heigh*,
and height of the first cloud layer) were determined. In Figure 1 the
distribution of the 1872-1975 temperature and u-wind observations fo-
Wernigerode are displayed with their sample means denoted bv a star. The
distributions shown here are typical cf the temperature and u- and v-wirc
observations for all seven stations used in this study. As can be seen in
Figure 1, these variables appear to be quite normally distributed.

On the other hand the distributicns found for visibility and the
cloud height variables were far from normal. In Ficure 2a the distributicn
found for the visibilities observed at Wernigerode is shown. This distri-
butior, which is typical of those found for the visibility and cloud height
variables at all seven stations, is roughly rectangular with a sample mean
of just over 9 km. However, since an MVAR model is designed to predict
deviations of the variables about their sample means and since for these
three variables the sample means are much larger than the low visibility
and low ceiling situationg that one would like to be able to predict, the
following transformations were performed upon these variables in order to

emphasize the variance of the low visibility {ceiling) situations:

(@S]
—

V2 = exp(-V1/2020) (
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Figure 1. Distribution of 1972-1975 temperature and u-wind observations
for Wernigerode. .
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€2 = expl-C1/1000), § (4)
where V1 and C1 are the observed visibility and cloud height, respectively.
in meters. In Figure 2b we can see the effect of this transformation upon
the visibility distribution for Wernigerode. The sample mean of the trans-
formed variable now represents a visibility of only 2.4 km. Furthermore,
an observation of visibility less than 1 km will contribute more to the
variance than an observation of unlimited visibility since its deviation
from the sample mean will be lYarger. By expanding the scale for low v* ‘-
bilities and decreasing the scale for high visibilities, this transformat:ior
permits more precise forecasts of the poor visibility situations.

Next, monthly and hourly means were computed for all variab’=s at
all stations using the 1972-1975 observations. Table 1 summarizes the

Table 1. Variance explained by monthly and hourly means for Hannover
(1972-1975).

Total Variance Explained by:
Variable Variance Monthlv Means Percent Hourly Means Percent
First Cloud Layer Ht.* .0791 .0052 6.6 .0036 4.6
Ceiling Ht.* .0843 .0070 8.3 .0028 3.3
Temperature 53.49 32.13 60.1 4.70 8.8
Visibility* .C331 .0021 6.3 .0013 3.9
u-wind 13.63 .79 5.8 .062 0.5
v-wind 6.08 .52 16.4 .32 0.5

* Indicates transformed variable.

results of these computations for Hannover, which again are typical of
those found for the other stations. We can see that with the exception
of monthly averages for temperature, only a small percent of the total

variance for the sixvariables is explained by the annual and diurnal cycles.

14

e




8UGO -
| i
{
N ! '
S 6000 |
— H j i
< L '1
9:. ' 1
g 4ooo k- Ve=EXP (-V!IS/2000]
= Y
e |
) |
=)
< 2000 - ;
r‘_‘—i
! { '
: * | |
— |
i .
Ve U.u 0.1 0.2 U.3 0.4 U.5 0.6 0.7 0.6 U.9 .U
VIS (KMjee 46 3.¢ 2.4 1.6 i.4 1.0 0.7 0.4 u.2 U.U

Figure 2b. Distribution of transformed 1972-1975 visibility observations
for Wernigerod.

!ﬁ
¢
|




Typically, about 60 percent of the temperature variance is. explained by

the annual cycle. Plots of the hourly and monthly means for Hannover are
displayed in Figure 3. We can see that the amplitude of the annual wave is
about 8°C while that of the diurnal wave is about 3°C. Since all seven
stations display this pronounced annual wave for temperature and it explains
a significant amount of the variance, its effect will be removed from the
temperature data along with that of the diurnal cycle and the sample mean
before any MVAR models are determined for that variable. One must be care-
ful when attempting to fit an MVAR model to data which are highly correiated
since unstable processes can be produced. In any case, it is the deviations
about these very regular cycles that we are interested in forecasting, and,

thus it is these deviations which we will attempt to model.
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4. Application and Results

Using observations collected during 1972-1974 the MVAR modeling
process described in Section 2 was applied in several different ways in
order to determine the best forecasting technique. Given the tactical
constraint of limited computer size and storage, we will only consider
MVAR forecast models of ordernineor less. Thus, only a one day history
of observations of the predictor variables need be stored at a time. This
tactical consideration also 1imits the number of variables toc be used by
the MVAR models (not only those to be predicted but also those to aid in
the prediction). For example, if an MVAR model were developed which used
all of the observed variables for all stations, then it would possess 49
variables. If the model were of order nine, then nine 49 x 49 coefficient
matrices would have to be stored and used in the forecast computations along
with nine 49 x 1 observational vectors from the past 24 hours. This would
require almost 100K bytes of storage and a comparably large number of
computations required to make the forecasts. On the other hand, a model of
order nine with only seven variables would require about 50 times less space
and computation time.

The first type of MVAR model to be tested used the six variables
to be predicted (temperature, u- and v-wind components, visibility, ceiling
height, and height of the first cloud layer) along with the dew-point tem-
perature for one station at a time. The analysis procedure outlined in
Section 2 was applied using the 1972-1974 observations to calculate the
lag sum matrices. The model order was restricted to be no greater than
nine and this maximum was chosen in every case except for Braunschweig where

an eighth order model possessed the smallest Akaike FPE parameter. The

18




7 x 7 coefficient matrices for each resulting station model were determined
along with estimates of the one-step prediction error variance for the six
variables to be forecast. We will use these estimates in order to determine
the quality of the various MVAR forecast models tested here. Table 2 summar-
izes the results for the 7 station models. We can see that using such a
Table 2. Estimates of one-step prediction error variance and percent

variance explained (in parenthesis) for the station MVAR models
determined from 1972-1974 observations.

Height of
Model 1st Cloud Ceiling |
Station Order Layer* Height* Temperature Visibility* u-wind v-wird }
Hannover 9 .0374 .0436 2.55 .0164 2.96 2.40 y
(54.7) (48.6) (94.8) (52.2) (78.8) (63.0) ;
Bremen 9 .0367 .0436 2.93 .0194 3.31  2.99 k
(52.8) (45.5) (93.8) (42.4) (78.4) (67.3) 4
Boizenburg 9 .0181 .0308 3.75 .0252 4.78 3.47 }
(32.2) (35.0) (92.4) (46.8) {63.9) (48.4)
Braunschweig 8 .0296 .0333 3.12 .0112 2.82 2.46
{53.2) (49.8) (92.7) (55.0) (75.9) (59.1)
Magdeburg 9 .0260 .0314 .58 . 1400 3.01 3.17
3.3) (66.7) (72.1) (52.0)

Wernigerode 9 .0223 .0264

3

(36.3) (38.8) (9
3

(38.4) (42.5) (

|
.9 .0332 3.97 4.16 ’
2.1) (64.6) (67.5) (46.0) }
5 .0186 5.01 3.06

Weissen 9 .0360 .0391 4.1 §
(92.4) (50.4) (67.5) (52.9) l

(33.1) (38.8)

*Indicates transformed variable.

model we can best forecast temperatures (from 92.1 to 94.8 percent variance
explained) and are Tleast able to forecast the height of the first cloud
layer (from 32.2 to 54.7 percent variance explained). One can roughly
expect to explain 40%, 55%, 55%, and 70% of the variance for ceiling height,

visibility, v-wind, and u-wind, respectively.




The next type of MVAR model to be investigated utilized the obser- I3
vations for a particular variable at all seven stations. Again the model |
order was restricted to nine or less and the MVAR analysis procedure was
applied to the 1972-1974 observations for the six different variables to
be forecast. In Table 3 the estimates of the one-step prediction error
variance and the percent variance explained for the 6 variable models are L
displayed. In this case, as discussed in Section 3, the monthly and hourly ‘
Table 3. Estimates of one-step prediction error variance and percent varianc:

explained (in parenthesis) for the variable MVAR models determined :
from 1972-1974 observations. :

Model

Variable Order Hannover Bremen Boizenburg Braunschweig MagdeburgWernigerode Weissen
Height L
of 1st &
Cloud .0359 .0369 .0183 .0261 .0244 .0224 .033u |
Layer* 9 (56.5) (52.5) (31.5) (58.7) (40.2) (38.1) (37.7) i
Ceiling .0419 .0440 .0298 .0293 .0282 .0263 .0367
Height* 9 (50.6) (45.0) (37.1) (55.9) (25.0) (42.7) (42.6)
Tempera- 2.26 2.34 2.63 2.02 2.35 2.82 3.19
ture 9 (95.4) (95.0) (94.7) (95.3) (95.6) (94.3) (94.1) ?
Visi- .0157 .0187 .0241 .0097 .0132 .0335 .0178
bility* 9 (54.2) (44.5) (49.2) (61.0) (68.6) (64.3) (52.5)

2.51 3.18 3.85 2.28 2.33 3.66 3.88
u-wind 9 (82.0) (79.2) (70.8) (80.5) (78.4) (70.0) (74.2)

2.00 3.08 2.99 2.03 2.51 3.72 2.48
v-wind 9 (69.1) (66.3) (55.6) (66.3) (62.0) (51.7) (61.8)
* Indicates transformed variable. y

means were removed along with the sample means for the temperature observations.
A comparison of Tables 2 and 3 indicates that in almost every case the percent }
variance explained by the variable-at-a-time MVAR models is greater than that

for the station-at-a-time models. The greatest improvement is noted for the

20
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v-wind predictions where the percent variance explained is increased by as
much as 10%. For the variable-at-a-time models we can expect to explain
approximately 95%, 75%, 60%, 55%, 45%, and 45% of the variance, respectively,
for temperature, u-wind, v-wind, visibility, ceiiing height, and height of
the first cloud layer.

For the first two types of MVAR models tested here the model order
was limited. However, for both types, MVAR models were determined in which
the maximum order permitted was 30. In these cases MVAR models whose order
ranged from 25 to 30 were found to possess the minimum value of the Akaike
FPE parameter. In every case though the reduction of the one-step prediction
error variance over that of the ninth order models was negligible. Thus,
the limitation of the model size required by the tactical situation has no
detrimental effect upon the guality of the forecast models produced.

A final MVAR model was examined in which the number of variables
was 21, consisting of the aforementioned seven variables for the stations,
Hannover, Bremen, and Braunschweig. Again the model order was Timited to
nine or less and a ninth order mode] was chosen by the analysis procedure.
Table 4 summarizes the results for this particular model.

Table 4. Estimates of one-step prediction error variance and percent

variance explained (in parenthesis) for the three-station
MVAR model determined from 1972-1974 observations.

Height of
1st Cloud Ceiling
Station Layer* Height* Temperature Visibility* u-wind v-wind
Hannover .0341 .0391 2.10 .0152 2.46 1.97
(58.7) (53.9) (94.7) (55.7) (82.3) (69.6)
Bremen .0348 .0416 2.31 .0182 2.97 2.87
(55.2) (47.9) (95.1) (46.0) (80.6) (68.6)
Braunschweig  .0248 .0282 2.19 .0098 2.24 1.98
(60.8) (57.5) (94.9) (60.6) (80.8) (67.1)

* Indicates transformed variable.
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Comparing Table 4 with Table 3 one can see that this 21l-variable model is

only slightly better than the three respective 7-variable models. Therefore,

since the variable-at-a-time models can be run using about one-tenth the
computer space and time and since there is negligible improvement to be
gained from the larger model, they have been chosen as the best MVAR fore-
cast model to be used for short-range predictions in a tactical situation.
We have seen in this section how well, based on the MVAR theory
described in Section 2, we can expect to forecast the six meteorclogoiia:
variables of interest in this study. Using the six variable-at-a-time
models, whose expected performances are outlined in Table 3, and observa-
tions collected during 1976, a number of MVAR forecasts were made anc com-
pared with the observations valid at the forecast time. Assuming *hat tre
MVAR forecast models are unbiased, theoretical estimates of the root mean
square errors (RMSE's) for the one-step through four-step predictions are
obtained by simply taking the square root of the one-step through four-step
prediction error variances. These theoretical RMSE's are then compared with
the actual RMSE's computed from 3-, 6-, 9-, and 12-hour forecasts made using
the six MVAR models (developed using 1972-1974 data) upon 1976 observations.
Tables 5 and 6 display the results of 48 MVAR forecasts using the
ninth order variable-at-a-time models for the transformed variables height
of the first cloud layer and ceiling height, respectively. We can see in
Table 5 that in virtually every case the RMSE's computed from the actual
MVAR forecasts were smaller than those expected from theory and in no case
were they larger. The RMSE's determined from the ceiling height forecasts
shown in Table 6 agree quite closely with their theoretical counterparts

for four stations (Hannover, Bremen, Braunschweig, and Weissen) and are




Table 5. Comparison of theoretical forecast RMSE's (T) with those computed
from actual MVAR forecasts (C) using 1974 transformed height of
first cloud layer data.

No. of 3-hour FCST 6-hour FCS$MSg:;our FCST 12-hour FCST
Station Forecasts C T C T C T C T
Hannover 48 0.12 0.19 0.18 0.23 0.19 0.25 0.20 N.26
Bremen 48 0.11 0.19 0.6 0.23 0.17 0.25 0.20 0.26
Boizenburg 48 0.10 0.14 0.1@ 0.15 0.12 0.15 2.12 0.15
Braunschweig 48 0.13 0.16 0.14 0.19 0.20 0.21 C.17 G§.22
Madgeburg 48 G.09 0.i6 0.15 G.17 0.11 0.18 0.14 C.19
Wernigerode 48 0.08 0.i15 0.1C ¢C.16 0.10 0.17 0.09 Q.18
Weissen 48 0.17 0.18 0.20 0.20 0.21 Q.21 ©o.22 .22

Table 6. Comparison of theoretical forecast RMSE's (T) with those computed
from actual MVAR forecasts (C) using 1976 transformed ceiling
height data.

RMSE's

No. of 3-hour FCST  6-hour FCST  9-hour FCST 12-hour FCST 4
Station Forecasts C T L 1 C T c T ;
Hannover 48 0.20 0.20 0.24 0.24 0.28 0.25 0.25 0.27
Bremen 48 0.22 0.21 0.26 0.24 0.27 0.25 0.28 c.27 ?
Boizenburg 48 0.11 0.17 0.12 0.19 0.13 0.20 0.13 0.21 i
Braunschweig 48 0.19 0.17 0.18 0.20 0.26 0.22 0.20 0.23 I
Magdeburg 48 0.10 0.17 0.16 0.19 0.12 0.20 0.15 0.21
Wernigerode 48 0.08 .16 0.10 0.18 0.10 0.19 0.10 0.20
Weissen 48 ~ 18 0.19 0.20 0.21 Q.21 Q.22 Q.23 0.23

consistently smaller for the other three stations. The results for 46 MVAR

forecasts for the third transformed variable, visibility, are shown in
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Table 7. With the exception of those found for Boizenburg, the RMSE's !

computed from the forecasts aqree cuite well with those expected from troory,

Table 7. Comparisor of theoretical forecast RMSE's (T) with those compu*erd
from actual MVAR forecasts (C) using 1976 transformed visibility

data.
RMSE's ¢

No. of 3-hour FCST  6-hour FCST  9-hour FCST  1Z-hour ~C
Station Ferecasts € T C T C T 1 N
Hannover 46 n.og 6.3 0.09 0.15 0.1& 0C.16 C.iC o
Bremen 45 0.09 0.4 0.14 0.6 Q.15 5.5 0.2 C
Boizen..rg a6 0.3 C.,16 0.29 0.18 Q.28 C.1¢ T.22 0 LM% |
Braunschweig 46 0.10 0.1 0.09 0.12 0.2: G.i3  Co.iv TS &T
Maadeburg 46  0.14 0.11 0.2 0.14 0.14 9.6 .22~ g
Wernigerode 46 0.25 0.1 0.19 9Q0.2¢ 0.1 0.2¢ 0.2t °
Weissen 46 0.12 0.1 0.16 0.15 0.19 0.6 (.22 C.Y7

It was found that during the forecast periods, a much Targer number of zero
visibilities {resulting in a transformed variable value of one) were actually
observed at Boizenburg than at any other station. In Figure 2b  we can see

that sucn observations would result in an increase in variance and thus in

tho DMSE's for the transformed visibilities.

The RMSE comparison for 58 temperature forecasts is displtayed in ‘L
Teh'e 2 while those for 140 wind forecasts are shown in Tables 9 and 10. |
We car see in Tables 8 and 9 that the computed RMSE's are slightly larger

than their theoretical counterparts for the temperature and u-wind MVAR

it - =
Eat————

forecasts. In no case, however, are these differences significant. The

v-wind MVAR forecasts, whose RMSE's are shown in Table 10, are consistently
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Table 8. Comparison of theoretical forecast BMSE's {7) with those computecd
from actual MVAR forecasts (C) usirg 1976 temperature data.

RMSE -,

3-hour FCST  6-hour FCST  9-hour FIST  l1Z-hour FCST
Station Forecasts C T C T e
Hannover 58 1.65 1.50 2.25 2.ce 2.94 Z2.38 279 2.7
Bremen 58 1.71 .83  2.07 2.02 2.4c 2.31  2.72  2.%7
Boizenburg 58 1.61  1.62 1.9¢ 2.08 Z.31 2.36 2.25 2.57
Braunschweig 58 1.54 1.42 2.11 1.93  2.50 2.24 2.55 Zz.57
Magdeburg 58 .76 1,52 2,29 Z2.0C  2.440 2.30 2,43 Z.it
Wernigerode 58 2.18 1.68 2.53 2.1& 2.82 2.£9 2.¢ 2.7¢
Weissen 58 1.93  1.78 2,89 2,28 2,57 2.5 2.26 D.7-

better than those expected from theory. In summary, we have seen *n Tables :

5 - 10 that for the most part, when tested upon 1976 observations, the fore- ﬁ
casts produced by the six ninth order variable-at-a-time MVAR models {developed ﬁ
using 1972-1974 data) agree quite well with what one would expect theoretically. .

Table 9. Comparison of theoretical forecast RMSE's (7) with those computed
from actual MVAR forecasts (C) using 1976 u-wind data.

-1
RMSE's  (msec | !
3-hour FCST 6-hour FCST 9-hour FCST 12-hour FCST

Station Forecasts C T C T C i C T
Hannover 140 2.02 1.58 2.32 2.09 2.97 2.42 z.99 2.7:
Bremen 140 2.56 1.78 2.87 2.28 3.26 2.60 3.42 2.87

Boizenburg 140 1.95 1.96 2.31 2.23 2.71 2.45 2.€9 2.6¢6
Braunschweig 140 1.74 1.51 2.31 1.95 2.74 2.26 3.01 2.5C
Magdeburg 140 1.52 1.53 2.34 1.88 2.65 2.16 2.87 2.36
Wernigerode 140 2.17 1.91 2.71 2.27 2.81 2.53 2.6% 2.72

Weissen 140 1.99 1.97 2.65 2.29 2.97 2.57 .17 2.77
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Tahle 10. Tfomparison of theoretical forecast BMSE's (7) with those computec
from actual MVAR forecasts (C) using 1976 v-wind date.

-1
RMSE's 'msec -
3-hour FCST bH-hour (ST Q-nhour FCST

Station Forecasts C T C T C T

Hannover 140 1.32 1.47 1.41 1.74 1.78 1.97 1.80 2.13
Bremen 140 1.83 1.7%  2.13 2.17 2.48 2.41 2.°2 2.82
Rgarenbure 140 1.2 1.7 1.45 1.96 1.5% Z.1i2 60 2.28
Braurzitweis 10 1,320 1A 1043 1.7C 1.77 0 1.80 L7227
Majdeoury $&n 1,25 L. 1.33 1.R30 1,00 2.0 T 2T
Wevnigerode 140 1.0 1.3 1.24 2.18 2,25 2.3¢ 2.05 Z.s7
Weissen 140 1.45 1.57 1.5 1.82 1.88 2.0 I

Finally, in the next table we will demonstrate how coniigence inzterv
can oe piaced about MVAR predictions using two visihility forecastc ~a'e
the vartatle-at-2-2ime model. Fror the error analysis of the actual forecas’s
whose reso i are outlined in Tables 5 - 10, we conciude that in practice the
MyAaR mode” t merne sredictions mucn Tike we would expect from theory. Confiderce
intervals ‘C.7.) to be placed about the MVAR predictions can be computed by
multinlytne o constant (varying in size depending on the percent C.I. desired)
by Lhe sgucr> root of the estimated forecast-step prediction error variance.
Since thio 14 eguivalent to multiplying that constant by the theoretica’
S4M3.°s saown in Tables 5 - 10, we can see that, as one wou'd expect, larger
ana argec C.1.'s will be determined as the forecast-step is increased.

The results of two visibility forecasts made using the variable-

at-a-time MVAR model are shown in Table 11. The forecasts and confidence

intervals have been transformed back into normal units (km). The 12-hour
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Table 11. A comparison of MVAR visibility forecasts (F) and 80" confidence
intervals (in parenthesis! with the actual observed visipilities

(A).
Forecast Time - 187, March 29, 1976

3~hour 6-hour 2-hoyur 1Z2-hour

Station F A £ A £ A BEA
20+ 20+ 7.8 20 7.1 8 5.2 7

Hannover (3.9,20+) (3.1,20+) [2.5,20+: 12.5,20+)
20+ 20 20+ 20 01 20 5.7 4

Bremen (3.7,20+) (3.2,20+) (2.1,20+) (2.6,20+)
7.5 18 8.2 15 6.7 12 4.5 6

Boizenburg {3.0,20+) (2.8,20+) 2.6,204) oLn,20+
20+ 20 20+ 15 9 5 2.8 ¢

Braunschweig {4.3,20+) {3.8,20+) {3.5,20+) {2.3,204)
20+ 16 20+ 16 6.9 12 6.5 12

Magdeburg (4.1,20+) (3.5,20+) [2.9,20+) 17.7,204)
4 20 0.5 0 0.6 0 4.9 12

Wernigerode  (2.0,20+) (0., 1.3) (0., 1.5) {2.1,20 )
20+ 20 7.3 20 5.5 15 5.7 €

Weissen (3.6,20+) (3.0,20+) (2.6,20+) (2.6,20+)

Forecast Time - 06Z, April 1€, 1976

3-hour 6-hour 9-hour 12-hour

Station F oA F A F A E A
1.1 0.4 2.1 € 3 10 3. 8

Hannover {0.6,1.7) (1.3,3.8) (1.7,7.7) (1.8,20+)
1.3 1.5 2.2 6 2.5 8 3.1 9

Bremen (0.7,2.1) (1.3,4.2) (1.4,5.2) (1.7.204)
0.7 0 1.4 7 1.8 0 2.3 10

Boizenburg (0.2,1.4) {0.6,2.6) (0.9,3.7) (1.1,5.5)
0.9 0.1 1.9 6 2.3 7 3.0 6

Braunschweig (0.5,1.3) (1.2,2.9) (1.5,3.8) 11.8,6.2)
0.7 3.5 1.5 6 1.8 8 2.1 6

Magdeburg (0.3,1.2) (0.8,2.4) (1.0,3.2) (1.2,4.1)
1.8 4.5 1.8 4 3.1 6 3.2 &

Wernigerode {0.9,3.4) (0.8,3.8) (1.5,20+) (1.5,20+)
1.0 4 1.8 6 2.2 10 2.6 8

Weissen (0.5,1.7) (1.0.3.2) (1.3,4.3) (1.4,6.1)

e
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period after 18/ on March 29, 1974, was basically a time of hizh yisibit=t

itothis case every 8C C.1. about the MVAR forecasts included the actuail

visibility. It is especially notable that the model predicted very wel:

the very low visibilities actually observed at Wernigerode 6 and 9 hours

atter tre initial time. The 1Z-hour period following 067 on Acri’ 16,

1vjt, was une in which visibilities were very Tow after 2 hogury ood - +

sieadily laproveu over the rest of the pericd. The very low vigibimisin.

«

at the 3-n0 mark were well forecast and for every station the vis ol o
were predicted to improve out tc 12 hours. In this case the model ©7: npo
improve the visibilities as fast as nature and only a few of *he 37 7.0.

include the actual observaticns. From this table we can see tha* the ‘
confidence intervals can probably be best used by an actua’® forecaste:r +-

cnecify a minimum expected visibility in high visibility sitiationg anc

Mot om o mxnected visibility in low visibility situations. This type of

(17

interpretation of the C.1.'s is a’so appropriate for the other *wo *rans-
“ormed varizes fceiling height .nd height of first cloud laver). The
customary interpretation of the C.1.'s as a range in which we expect the
variable to lie can be applied to the other three variables (temperature,
u-wind, ar? v-wird). This range was found to be the order of jZOC and

+z mf/szt tur a s-hour forecast of temperature and the wind components,
=azpectiv. Ty, For 12-hour forecasts it was found that the temperature and

+

vl oranges were about j_3°C and + 3.5 m/sec, respectively.
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5. Conclusions

In this study multivariate autoregressive ciimatological modelcs

were developed to be used for short-term forecasting of six atmospheric

variables (temperature, visibility, u-wind, v-wind, ceiling height, and
height of the first cloud Tayer) over a limited area in a tactical situation. ¥
After a prelimirary data analysis it was found that the cloud-height variables

and visibility could hest be forecast i¢ they were first transferred so that

the variance of low ceiling ard visibility situations be emphasized over :
that of high ceiling and visibility conditions. Various forecast models

were investigated, and it was found that, given the tactical constraints,

L =k

the best models were ninth order variable-at-a-time MVAR models in which
an observation vector consisted of the values of the variable to be predicted
at the seven German stations used in this study (Hannover, Bremen, Braun-
schweig, 3oizenburg, Magdeburg, Wernigerode, and Weissen). The gredictien
error variance matrix and the coefficient matrices for each of the six
variable-at-a-time MVAR forecast models are tabulated in Appendix A.
Using these models one can expect to make 3-hour forecasts which explain
approximately 95%, 75%, 60%, 55%, 45% and 45% of the variance, respectively,
for temperature, u-wind, v-wind, visibility, ceiling height, and height
of the first cloud layer.

The MVAR models were developed using data crllected during 1972-
1974. The models were then tested independently using 1976 observations
and it was found that the actual forecast errors agree guite well with
what would be theoretically predicted. Using the estimated prediction
error variances, confidence intervais were determined to he placed ahout *he

MVAR forecasts. It was found that 80% C.I.'s of + 29C and + 2 m/scc coulr
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be placed about the 3-hour forecasts of temperature and the wind components.
respectively. Due to the variable transformation made upon the visibility
anc¢ cloud height variables, it was found that the confidence intervais coulc
be best used to determine minimum expected visibilities (or cloud heights!
in high visibility (or ceiling) situations and to determine maximums in the

peor visibility {low ceiling) situations.
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APPENDIX A

COVARIANCE AND COTFFICIERT MATRICES FOR THE SIX i
VARTABLZ-AT-A-TIML MVAR MODELS

VARIABLE-AT-A-TIME MVAR MODEL FOR TFMOFERATURE MOD®=L ORDEER IS 3

ONE-STEP PREDICTION ERROR COVARIANCE MATRIX

2.2390 1.3424 1.1723 1.3838 1.0775 1.4253 1,233

1.3424 2,3353 1.1%17C 1. 0036 0.7832 0.9985 0.9633

11,1723 1.1171 2.6270 1. 0690 1.0708 1. 1669 1.60453

1.3838 1.0037 1.C691 2.0247 1.1673 1.4253 1.2154

MUY A 0.7833 1.0708 1.1673 2.3475 1.371 1. 4996 !

T,u53 0.998¢6 1.1669 1, 4253 1.3710 2.8232 1.48082 t

Yedud! ",9633 1.6049 1.2156 1.48995 1.4082 3.19°02 k
}

COEPFICIENT MATRIY A1

-0.5152  -0.279y -0.0838 -0.3477 0.Cu406 -C.202C =-2.0514 i
-0.2149 -C.59Se -(.0952 -0.0068 0.,0339 -C.1CH5 -7.0254 b
=7.1778 -0.2456 -0.4113 £.7529 -0.0214 -C.072 =",1527 b

-0.1878 -0.1457 -0.0813 =-0.4863 0.0243 =-0.1508 -2.0324
-2.15644 =0.0695 =-0.1085 =-0.1129 -0.3041 -0.2153 =",.1029
-C.2374 -0.0825 -0.0531 =-C.0294 =-0.0057 -0.6194  C.C31# ;
-0.1747 -0.0978 =-C.2359 0.0111 -0.0222 -C.08%1 =0,5%74 p
g
COZEFICTENT MATEIX A2 y
P
0,0%47  ©£,2889 C,0413  0.0165 C.0396  0.027°0  0.9324 )
TL1i47 0 C.R176  -0.0182 L0366  0.03u6 =-0.0149  0.0387
0.1740 0.1'°04 -0,0832 =-0.2680 0.0329 =-0.0260 C.0SIR .
0.1205  ..2338 -0.0096 -0.1213  (.0488  0.0105  0.Cu8Y ;

¢.15133 3.0576 0.2342 =~0.0246 -0.0134 -0.00A81 0.c037
D.1592 7.06691 -0.0617 -C.0326 0.0395 -0.0502 0.0193
J.1437 0.0884 0.0181 «0.0344 0.0087 -0.0518 0.0152

TORPSICIENT *ATRLIY A3 &

0,040 -n,0C41 =-0,0218 =-0.0147 0.0039 -C.00993 0.C176
2.ulsld -0,0360 0.0252 0.0115 -0.0219 -0.0067 0.0394
ST -7 0576 0.0139 0.0Qu426 0.0235 0.C272 0.0578
NP.CHhes -0.0090 -0.0332 =0.0401 0.0372 c.0183 2.0317
~0.0u653 -+0.0554 ~-0.0134 0.0949 -0.0065 -0.0220 0.0708
~d.ul1% -2.0717 -C.0132 0.0528 0.0667 €.0026 0.06487
-0.0v. B9 0,931 0.0075 0.0569 D.0228 0.0070 0. 0990

JOEFFPICIENT MATRIX AU

c.028C -0.0069 0.0366 0.0219 0.0034 -0.0200 0.C022

2,0032 -0.0244 0.0068 0.0304 0.0061 -0.0136 0.0022

TL.huuY9 0.0299 -0.0871 =0.07M 0.0137 -0.0658 0.C354

Jec 183 0.0059 0.0311 -0.0163 =-0.0134 -0.0496 -0.0041 .
.85 0.0062 0.0113 0.0112 -0.0597 -0.01%06 -0.039C (.4
-).0633 0.0283 -0.0757 0.0028 -0.0324 -~0.0u00 -0.C139

0.01352 0.0291 -0.0209 =-0.0149 -0.0436 -0.0429 -0.0302

» p——
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COEFFICIENT MATRIX AS

-0.,0925
-0.0421
'0.11“5
-0.0299
’000721
-0.1080
-0.0977

-0.0133
0.0071
0.0584
0.0205
0.0234
0.0844
C.C143

-0.0029

0.0598
-0.0289

0.0060
-0.0139
-0.0326
-0.0394

-000956
-0¢0u91
-0,0284
-0.0252
-0,0514
‘0'0771
-0.1077

0.0553
0.0869
0.0992
0.0749
0.1017
0.1518
0.1420

PR DU

‘000017
-0.0392
-0.0149
-0.0002

0.0082

0.0u18
-0.0309

-0.041C
-0.08698
-0.0465
-0.C224
-0.0542
-0.08913
-0.0217

-0.0365
-0.0557
-0.0335
-0.0338
-0.0409
~-0.0078
-0.0672

-0.0360
-000596
-00066“
-0.0158
-000‘6“

0.0069
-0.0097

0.0798
0.0310
0.0506
0.0557
0.0225
0.0444
0.0514

0.0201
0.0252
0.0764
-0.0127
0.0294
C.1245
0.0313

COEFFICIENT MATRIY A6

0.0411
0.0277
-0.0673
0.0252
-0.0115
-0.0623
0.0414

COEFPICIENT MATRIX A7

-0.0428
-0.0800
-t.C113
~-0.0010

0.C244
‘0.01“6
-0,0108

COEFFICIENT MATRIX A8

‘000136
’0.006“
-0.0779
-0.0302
-0,0389

0.0145
-0.C354

COEFFPICIENT MATRIX A9

0.0320
0,0551
c.0521
0.0560
0.0682
0.0368
0.0778

-0,0072
-0.0013

0.0907
-0.0614
-0.0172

0.0127
-0.C093

0.0027
-0.0232
-0, 0469
-0.0520

0.0347
~0.0166

0.0u4B4

0.05u1
0.0474
0.0385
0.0289
0.0503
0.0565
0.0475

-0.0697
-0.0547
0.0103
-0.1280
-0. 0590
-0.0757
-0.0592

0.0306
0.0102
-0002u2
-0.0012
0.0192
0.00u4
0.0082
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0.0275
-0.0000
-0.0280

0.0327
-0.0189
-0.0167

0.C175

-0.C148
-0.0138

0.0130
-0.0011
-0.0362
'0.02“1
-0.0351

-0.0222
-0.0425
-0.0367
-G.0220
-0.0“50
-0.0087
-0.0163

-0.0575
-0.0622
-0.0400
-0.0823
-0.1082
-0.1425
-0.G799

0.0079
0.01486
0.0537
0.0225
0.0384
0.0191

-0.0197
-6.0097
0.0682
0.0256
0.0523
0.0740
0.0322

-0.0054
0.0115
-0.0806
-0.0151
-0.0232
0. 1493
-0.027%

0.0434
0.06C8
0.1244
0.0456
0.0760
0.0698
0.1248

’0.02“5
-0.0653
-0.0977
-0.0u457
-0.0982
‘0.0“59
-0.0779

0.0533
0.0996
0.0755
0.0692
0.0973
0.0340
C.0947

0.ccz2e
0.011C
~-0.0268
0.0278
0.0520
0.0258
£.02049

-0.6022
C.D0248
0.CUu26

-0.0178

-0.0152
0.0339

-3.C32%6

-0.C1C01
-000’37
-0.0453

0.0024
-0.0132
-0.0249
-0.C724

-0.0712
-0.0334
~0.C461
'0.0“97
-0.0820
=0.C456
-C. 1176

0.0426
0.0118
0.0520
0.0208
0.0509
0.0589
0.0559
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TARTABLE-AT-A-TIMS MVAR MODEL FOR U-wINC MODEL ORDER IS Q

ONZ-STEZp PREDICTION ERROR CCVARIANCE MATFIX

2.5136 1.3577  0.7470 1.1605 0.7448 0.9897 0.605¢
1.3577 3.3844 C.8616 (.9717 0.5516 0.7826  1.6750
0.7471 0.8617 3.8u94 0,669 (0.7303 0.5848  0.9971
1.1606 0.9717 0.6695 2.2772 0.8118  0.9386  0.55832
¢c.744”  0.5516 0.73C3 0.8118  2.3347 0.8537  0.7419
0.9397  0.7927 0.5848 1.9385 0.8%536 3.6600 0.5067
0.AOS6  N,57S%0 0,9971  0.5583  0.7419  C.S5087  1.8797
COTFRICTIVG WASDTY A4
<0.405%% - .13%: ~05.0295 =0.1455 -0,071% -C.1141 =-0.0207
-0.24C7  -T.%994  -0,04%7  -0,0948  0.0116 -0.0299 -0,"3iR<
“0.1467 =-0.272C =-0.2264 =03.0510 =-0.0798 =-0.0474 =0,.9%¢
~0,254L -0,2311 -0.0330 -0.3417 =-0.04€3 -0,.1305 -2,0145%
-0.2349 -0,1071 -0.0387 -05.1028 =-0.3C61 =0.1609 ~0.7543
042357 -0.1238 -0.0290 -0.0479 =-0.0932 =-0.4301 =-0.5123
~0,1582 -0.2172 =-0.1432 =-0.0874 =0.1719 =-0.0470 =0.2L57
COEFFICIENT YATRIX A2
-0.0082 0.0581 0.018C  0.0174¢  C.0125  ©.0595  9,0199 )
Y. ¢u31 =703 0,025 2.0535  C.0471 0.0314  2.0047 1
0.0075 0.0125 =-0,1045 -2,0023 C.0619 C.7177  0.0C94
0.0°17  0.1064 -0.0077 -2.1098 0.0066 C.0564 =-0.0049 ,
0.0414  0.0627 =-0.02646 0.0138 -0.0478 C.0152 =-0.5005
2 rREE N,0273 -N.2111  0,0006 0.04%R -0.0833  0.0218
N.N623  §$,0296 ~-0.03%8 -1.0126 -0.C0116  0.06%1 -0.2518 K
© EFFTCYIENT MATRIX A3 *i
C.Cu77 -0.0020  0.0091 0,009 -0.0027 -0.0165 =-0.C013 i
£.029! -0.0370 0.02517 0.0404 0.0112 -0.0030 -0.0153
©.C264  0.0130 -0.0481  0,0176 =-0.0011  0,0569 =-0,{250
9.07%4 -0,0046 ©0.023% -C.0246 0.0279 -0.0066  0.C118 ,
-2.0132  0.0307 0.0182 0.0715 -0.0062 -0.0065 <=9.0021 |
0.0661 =0.0107 =-C,0140  ©.0422 0.035C =-0.06C8 0.0077
-2.C27¢  $.0237  0.0172 0.0324  0.0597  0.0106 -0.0311 |
" LTPTICIENT MATRIX AL
-C.0268 -0.0154  0.0293 -0.0299 0.0155 0.0369  0.3237
-0.0157 -0.0432 (.0154¢  0.,0103 -0.0023 0.0033 0,007%
0.C0%1 -0.0108 -0,0490 0.0135 -0.0114 -C,0088 0,013
-0.06254 £.0006 0.0221 =-0.0672 0.0129 0.0175% =-0.C060
-c.03187 0.0006 -0.0145 -0.0039 -C.0218 -0.0020 -0.3032
-0.0165 -0.0304 0.0464 -0,0020 -0.0038 -0.,0007 0.0075%
0.0082 0,0172 0.0341 -0.0046 =-0,1643 =-0.0032 =-0.0369




COEFFICIENT MATRIX AS

-0.Cuus8 c.0321 -C.0225
-0.0182 0.0039 0.0045
-0.0468 0.0395 0.C144
0.0215 0.0375 -0.0011
-0.0147 0.0142 0.0173
0.0223 -0.0162 0.0%44
0.0039 0.0202 0.C155

COEPPICIENT MATRIX A6

2.0055 -0.0258 0.0190
-0.0140 -0.0432 c.0188
0.0589 0.0006 -0.0281
0.0228 -0,0315 0.0269
0.0381 0.0182 -0.0C98
0.039¢2 0.0072 -0.0049
0.0228 -0,011C -0,0C11

COEFFICIENT MATRIX A7

-0.C298 ¢.0086 -C.01M
-1.C162 -0.0088 -0.,0248
-C.0u489 0.0186 =-0.0437
-0.010¢% 0.0144 -0.0115
-0.0763 0.0255 -0.0211
0.0007 -0.0319 -0.0396
-0.0496 0.0135 -0.0132

COEPFICIENT MATRIX A8

0.0021 0.0168 -0.0C94
6.0097 -0.0021 -0.0125
0.0075 0.0203 -0.0400
-C.0246 -0.0022 -0.0419
0.0001 0.0049 -0.0082
0.0020 0.0119 -0.0180
-0.0064 0.0272 -0.0120

COEFFICIENT MATRIX A9

-0.C081 0.0059 -0.01C3
c.C318 -0.0134 -0.0012
0.0088 t.01%52 0.0068
0.0161 0.04uu 0.0052

-0.,0015 0.0165 ~-0.0093

-0.0197 0.0170 -0C,0024
0.0198 0.0C32 0.C103

0.0272
0.,C139
-0,0129
'0- 01u1
.0547
0.0219
¢.0376

-0.0018
-Oo 023‘
-0.0538
’Oc 0719
-0.0497
-3.0118
-0.0349

-0.0251
-0.0068
0.0261
-Oa 0““8
0.0390
0.0076
~-C. 0086

-0.0379
-0.0654
-0.0348
-0.0412
-0.0233
-0.0249
-0.0476

0.,0889
0.0670
0.0729
0.0u27
0.0781
0.0786
0.0458

-0.0C85
¢.0¢13
2.04€1
0.0321

-0.0115

"030109
0.0638

-C.0172
-0.0050
-0.0589
-0.0252
~0.0267
-%.0572

-000219

0.0295
C.05u8
0.0083
0.0281
C.0057
€.0229
0.0305

-0.0445
-0.0207
-0.,0200
-0.0549
~C.0uE3
-0.0120
-C.0252

0.0334
0.0375
0.0154
0.0366
0.0368
0.0335
0.0264

~-0.00372

0.Co0u4

0.0196
-0.0114
-0.,0199
-C.03672
-0.00us

-€.0085
6.C317
-0.0130
-C.CCC9
0.0174
-C.0224
0.0214

-0.008¢C
-0.0171

¢.0150

¢.0318
-0.0371
-0.0081
-0.0133

-0.0104

0.00u45
-0.00C5¢
-0.0281
-0.0154
-0.0521

0.0106

0.0131
-0.01C5
0.0097
0.0375
0.0154
-0.0125
C.0u6s

-2%.01M
-2.0039
2.0215
0.022¢%
0.C188
2.2C72
-0.C167

-0, 004¢

.008¢C
0.0125
-C.0034
-0.0141
0.0030C
-0.0224

-0.C2uy4
-D,03347
-0.C074
-0.,0120C

0.0006
-0,0119
-0.€208

-0.C001
-0.000¢C
-0.0134
-3. 0163
-0.C1M
0.,CCu2
-0.0236

-0.0060
-0.0016
0.CC76
0.C094
0.C058
0.C194
-0.0012




VAPIABLE-AT-A-TIMF MVAR MODSL FOR V-¥INT MCODEL CRDER IS A

ONF-STEP PRFDICTION ERROR COVARIANCE MATEIX

2.0704 0.895¢+ 0.5895 2.7087 0.5176 0.5277 D.u5z7
€.8955 3.0762 0.5891 C.u587 0.4CE1 0.3197 D.u337
0.5895 0.5891 2.9894 0.5059 0.uB896 0.2117 0.5842
€.7087 0.u4587 0.5059 £.0322 0.67C5 C.5%173 1.54872
0.5176 0.4081 0.48956 €.6705 2.5116 0.6577 0,600
0.5277 0.3197 0.2117 £.5178 0.6577 3,7166 APEHE R
2.452¢C C.41338 .5342 1.5673 2.6CC Col353 dowiTE

CORFFPTICIENT MATPRTY A1

-0.3342 -0,3204 -0.0893 -0.085 =-0,0385 =0,0201 =",""
-0.1306 =C.6586 -0,033"% -0,0495 =-0.0284  0,01A0 =0, "5i
-0,1214 =0.2677 =-0.2575 ~0.082) =0,0660 =0,022° =0,77%¢

-0.2151 -0.1891 -0.C%47 -3.27217 -0.0707 ~-0.0367 =",CHOr
-0.164C -0.1425 -0,0833 -2,18%9 =0.2008 -Q,082n -1, <77
-0.1973 -0.1506 -0,0778 -C.0992 -0.0671 -C.35u4» =",7 %«
-2.1621 -0.1806 -0.%1309 =-7,1272 =-0.0732 -C.043% ~",07"

CCEFFICIENT MATRIX A2

-C.0056 0.0325 C.C315 -C.0349 0.0065 -0.C0C37 D.0052 ]
£.0356 «0.016C 0.c278 0.0284 -0.02067 -0.00509 2.077
0.0833 0.0584 -0.0877 =~¢.0342 -0.0100 0.0209 0.72&4

6.06261 0.0579 6.0308 =-0.0791 0.0007 £.0009 n,0oN3e 1
c.c104 0.0682 0.0152 52,0018 -0.0284 C.0214 APt )
-C.0228 2.0656 c.027¢8 ".0783 D.227% -0,3638 -9.n72" .
C.Cu09 2.9357 C,0153 -~ L0127 =-0.00C96 C.C216  =2,7 42" .
'a
COEFFICISNT MATRIX A3 '

-0.0017 0.0574 ¢.0284 -0.0081 0.0183 -C.0007 =-0.,216"7
-C.0064 -C.0177 0.0256 0.0170 0.0293 C.0099 -0.C128
G.0093 2.0302 -0,0459 §.0005 £.0336 0.0287 -0,.008C
0.0301 0.0472 0.0306 -0.0212 0.0224 0.0127 0.00u1
(.0225 0.0198 0.0162 -0.0085 ~C.0404 0.028C -C.0Nu2
~0.0034 0.0452 ¢.0034 0.0218 -0.0167 -0.0177 0.0184
0.0242 3.0256 ~-0.0039 -0.0132 0.CC96 C.0174 =-0.0085 i

COEPPICIENT MATRIX AU

-0.0236 0.0071 0.001Y -0.0063 =~-0.0128 -C.0152 0.004u
-0.0106 -0,0060 0.0270 0.0038 -0.0036 0.0033 N.013R
0.0025 0.0100 -0.0420 =-0,0109 -0.0117 0.0134 0.72155
-0.0129 0.0040 -0.0203 -0.0313 -0.0170 -0.009% -C.0109
0.0101 -0.0116 ¢.0174 -0.0158 -0.0042 0.0010 =-0.0001
-0.0053 -0,04u8 0.0275 0.0373 -0.0094 -0.0129 0.0016
0.0114 0.0020 -0.0017 -0.0099 =-0.0115 -0,0026 =-D.00S6




CCEFFICIENT MATRIX AS

-2.0069
0.0104
-0.0121
V.00u3
-3.0127
-G.0280
0.0000

0.0035
-0.0336
0.0314
0.0057
-0.0180
'0.006“
-0.0069

0.0215
0.0057
-0.0472
0.0260
0.0186
0.0028
C.0166

COEFFPICIENT MATRIX A6

~0.C037
~-0.0167
§.0C16
J.0C52
£.C076
-0,0137
0.0093

-0.0127
-0.0399
€.0063
-0.0124
0.0060
0.012¢C
-0.0169

0.0210
-0.0036
~-0.C415
-0.0179
“C.01U7

0.008R
-3,0187

COEFFICIENT MATRIX A7

~-C.0290
-0.06026
-C.C196
-0.0245
-0.0181
-0.0016
-0.0175

-0.0063
-0.0264
-0.C179

0.00586

0.0070
-0.0036
-0.0083

-0.0177
-0,0151
-0.0245
-0.0144
-0.0062
-0.0085
-C.0075

COEFPFICIENT MATRIX A8

-0.0033
~C.0050
0.0u28
-0.00"6
-0.005C
.0681%
0.0155

0.0189
-0.0“59
0.0085
0.0146
0.0167
0.0169
0.0087

-0.C198

0.C117
-0.0308
’0.0358
-0.0262
-0.0238
-0.0180

COEFFICIENT MATRIX A9

0.0251
0.0359
0.0644
0.0357
0.0250
€.0162
0.0367

0.0302
0.0198
0.0422
0.0u472
0.0454
0.0289

0.0096
0.0058
-0.0255%
0.0195
-0.0018
0.0169
0.0098

——

-0.0186 0.011%5 g.¢g2¢ 0.0239
-0.08020 0.0125 5. 0086 7.0101

0.0016 G.009C 0.35331 0.2097

0.0030 0.0327 {.n286 ~0.0238
-0.0089 -C.0064 ¢.0130 -1.0163
-0.0157 0.0343 0.0063 -5.029¢C

0.0123 0.0023 0.0243 -0,00658
-0.0232 0.0106 -(.0079 0.0159
-0.0265 0.0224 £.061320 0.0067
-0.00u43 C.0172 -0.004° 2.021%4
-0.0345 0.2019 C.C¢0s7 -=C0.0002
~-0.0128 0.0013 -0.CC70 0.0353
-0.0069 0.0189 -C.0132 n.049¢C
-C.0255 £.0085 -0,00C5 0.0129
-0.0269 0.0Cc<e6 0.0090 =-0.01u8
-0.0311 C.CT114 ¢.0030 -0.008¢0
-0.03%1 -0.0€33 -0.0157 -0.0085
-0.0297 $.0023 ~-C.0C79 0.0002
-0.0181 -0.0282 -0.0104 -0.0052
-0.0606 0.0279 -0.0553 -0.0u498
0.0028 -0,0080 -0.0090 =-0.011%7
-0.0384 =-0.0166 -(,0085 6.0097
-0.0132 -0.0241 0.0067 0.0039
-0.0358 -0.0390 0.0027 -0,0067
-£.0409 -0.0354 -0.Ct64 -0.0018
-0.0015 -0.0292 ¢.0007 -0.0032
-0.0095 0.0130 -0.0763 0.0063
-0.0325 -0.0276 =-0,0139 -0.0061
-0.0255 0.C128 -0.0001 0.0178
~0.0274 €.0127 -0.0091 0.0255

0.0033 0.0041 -0C.0008 0.0191

0.0156 0.0039 -0.0078 0.C 146
-0.0074 £.01C8 -0.0055 6.0110

0.0025 -0.C187 -0.0113 0.0225

0.0131 c.0121 50,0034 -0,C084




VAPTYART RLMMogoTINT NYAP

CVYT-STEP CREDICTTICN FRROR COVARIANCE MATKRIX

...... 2.C0C32
0.0C5C . 0.0035
£.0033 0.0035 ¢.0241
2.0052 2.0C23 C.0C24
c.nt2v {.001¢ 2.Qc4ac
0.001¢ 0.001 0.0012

hhan L0020 2.0C65

(g

» D

oo
w n
<D

CCEPFIZYENT HATFTY 21

=0.4522 -0, ¥735  -0,0362
-2.170% 0 1523 -0 ,0093
-0.0854¢ 20,1396 -(C.425%

-0.2157 -0.1013 -0,0162
-0.,1283 -0.0443 -0,0438
-0.0u476 2.0182 0.01C
-0.0u497 -0.090C =-0,12723

COEFFICYENT MATPIY AZ

2.0312 0.0u95 n.G28s
PO 2.0225 LG.013g
T.10¢ 7 2.0 =0,0107
D.0321 J.C607 ¢.QoC97
2.0581 Y, 0046 2.0238
NL0232 =003t -GL0202
2.0725 Y.L tL.0282

G248 2.0127  0,0119
2,0068  =2.0003 =0.0027

COSFTCTENT MATRIY A4

L0751 -0,2189 £.0137
L2172 -0,8263 0.0220
.0n8c  -0.2323 c.0117
L0222 7.0024 -C.0051
Toacee -1.70€68 -C.0114
0252 5.C044 0.C012
17,0768 -3.3208 -CL0C92

27 2O DO

v )

JDEL FOR VISIBILITY MODEL OFDFEER 77

. 0052 0.0027 C.Cl16 2.C037
¢.C023 ¢c.001%6 0.2C011 n,on246
0.0024 C.004C €.0012 7.0065
.0097 0.00630 0.001%8 J.0016
¢.0030 ¢.0132 C.0018 D.rnny
. 0013 2.0018 €.0335 5,000
. 0019 0.Co34 c.2C22 Dot
-0,1164 ~0,0430 -0.03239 =-2,7.:
2.0199 ~-0.0325 =-C.0183 -0.7°°

-0.3845 =-0,C901 =C.031¢ -2, 0%6F
-0.,0984 ~-0,5623 -2.0244 -0,.77-+
-0.10%14 ~0.1C77 ~0.40CS 02,0187
-¢.0033 ~-0.C8&54 G.07%34 -TLen T

-5.0256 ~0.0959 =-0.005% =", 13576

2.0392 -0.0C68 ~0.00238 A,0327
2.0197 -0.023¢ -~C.3ICu AP
S.0u22 c.0C348 =-0.0092 f.23n2
1.0263 0.0087 ~-0.0043 G.C32 3
2.0501 -C.0627 ~C.0M147 L0227
-..0508 =-0.,0178 ~-C.0022 N.T222
.32M C.0C29 -0.0063 =-0.012°

-J3.0135 ~0.0026 C.0194 2.0130
-0.0205 0.0122 0.0264 -2.0041
-0.0591 0.0121 0.03u41 7. 0021
-0.0300 -0.0083 2.0099 3.0084
0.0094 -0.C0071 0.0129 0.0133
-0.0454 0.0368 .0570 0.2025
-0.0288 0.0122 0.0792 -2.0n27

0.0169 0.0076 =-0.00351 0.0027
0.00137 ¢c.0152 -0.07113 -0.7028
-0.0054 ~-C.0321 -0.0010 ~-0.CO0u3
-0.0054 0.0194 -0.0097 -0.0121
-0.0265 -~0.0380 0.0024 0.0016
0.0321 0.0337 -0.0724 -0.0027
-0.031% -~0.0064 -0.0022 0.0078

38




COEFFICIENT MATRIX AS

-9.0337 -0,00317 -0.,0277 0.0132 ~0.,0033 C.2075 3.206C
6.0053 -0.0279 -0,0213 -0.0086 €.0277 {.02358 T.0235
0.CGC12 0.0118 -0.0432 ¢.01Ca 0.0558 C.2006f 2.0C045
0.0251 -0.02C3 0.0109 0.2189 ~C.C26€6 C.C063 i.0032

-0.0N22 -0.0056 -0.0013 2.0172 2.0230 ~-0.0032 0. 77358%

-0.C190  -~C.0748 0.0C29 C.CZE’ ~C. 0143 0.06K81 ~C, 0007
0.0030 =-0,013C 0.0C71 -0.CCu3 0.0097 C.C295 -1, 7277

-0,0117  -0,0272 7.0228 0. 0068 -0,001¢6 C.CC8YQ 2.5004k
¢C.0290 -0.0482 .05 -0.0235 -{,0027 0.2740 0.704"7
¢.C286 ~0.0182 -C.C06€ ~-5.0C61 =-0.04u2¢€ 2.7719 0 ~2.0N58
.C¥81Y -0.0036 -C,018C ~-(, 0442 C.C3 C.2745 10123 |
5.0100 0.0012 0.0'90 =-0,C358 =-2,0472 =C,3720 =0.070071 '
-0.C148 0.r065 -C.0286 c.0014 -C,.0022 0.607¢ ~n.7 178 ru
0.001" 0.,0000 0.007¢C 0.0629% -C,028 0,005 2.0C76 '
COEFFICIENT MATRIX A7
-0.0218 -0,0231 -02.0%113 -0.065) ~C.0305 =-0.01%15 =0.C224C
-0.0198 -0.,0080 £.0058 0.0C36 =~0.0407 ~-C.C17102 ~0,0031
-0.0153 -0.0199 -0.054u -02,0113 ~0.C084 -C.0122 0.0023 .
0.01717 =-0,0176 0.00%% -0,0130 -0.03CC -0.73154 ~-02.0104
-0.0002 -0.2206 -0.0127 -0.0025 2.0265 -(,0C052 ‘. 0109
0.0366 ~-0.,0426 ~-0.0256 0.0283 ¢.0289 -0.1133 -(C.C32%
-C.0337 -0.0458 =-D0.,02%87 J. 0057 ~0.0175 -0.0081 =0,.0307

CCEFFICIENT MATRIX AS

-0.0584 -0.0131 -0.0045 =0.0369 =-0.0499  0.0047 -2.0477
-0.0444 -C.0376 =-0.0311 =0.0279 -0.0441 $.0145 =0.0579
-0.0507 -0.0395 -0.0262 0.0249 =-0.0505 0.0083 -0.0296
-2.0389 -0.0168 -0.031C =-0.0312 ~0.0621 0.0175 -0.057C

-0.0242 -0.0227 -0.0038 -0.0559 =~0.1144 =-0.0008 -0.2818 |
0.0009 -0.0097 ©,0242 0.0270 =~0.0067 -C.6131  3.0003

-0.0151 -0.0574 -0.0000 -0.0263 =0.0755 (.0029 =-0,0942 i

t

|

{

COEFFICIENT MATRIX AQ

0.0212 0.0u78 0.0338 0.0337 0.0678 C.0052 0.0304
g.0u01 0.0287 C.C357 0.0184 c.0578 -0,0030 O.ﬁ?f“
0.0335 0.0287 .0u53 0.0284 0.0258 -0.0143 e.02

0.0207 0.0422 0.0304 0.0252 0.0u45%9 0.0120 0 0?30
C.0034 0.0438 0.0259 0.0789 €.0535 ¢.02Mm 0.0407

0.0292 0.0375 0.0C67 0.02u4 0.0894 ¢.2C071 -C.0277
C.0u4980 0.042C 0.0373 0.0160 D.0HUC -C.C203 0.0549




VERTLRY. T . A< TTYY MYAR MONTT POP CEZILING

MOTEY 03N E T

NE-"TEP DFEDICTION FFEQR CUOVARIANCE MATFRIX

/. UGBS
reu) DG
1. 0034

-5.0072
-0.06G35
-0.C0007

-0.0304
€.018¢0
-000677

0.0067
0.0145
0.0420

40

-0.0520
-0.0289
0.0068

-0.0u470
-OQ 0633
-0.0626

0.0030
~-J.0521
~0.0012

Y.0813  0.01I2 L0056 2.7123 0 0.0C0e6 L.t e
0.0122  0.0440  2.C06%  C.006%1  C.0022  ~.97.- LT
©.0056  0.0069 C.0296  2.0037  ©.0049  C.0%e~  A.nrAnq
v.0123  0.0761  £.0037  0.0293  0.00Sk  0.)7s3  .0%4h
SLOMEE 3.0032 0 0.004S  0.3058  0.0282  L.0fLe  aLreel
1.605% 09,0025  £.00&T  .008)  0.0Ce8  LLG2ii rLnnoae
7.0R31 0 2.0032 C.C081  7.a046 0.0u5E (L oca o
GETETATENT mpmRTy 49
S0L35065  =NLZELY =0L0000 -0 c.30 200319 —0LIitn mLe
S3 168D 7 ATAR L AARZ =L 433 <0.0Cu0  -T. ~u g
Y0656 =0.136C ~-0.3331  0.7063  -{.007m - Ltinn <L ;
20,2990 =0.1123  -0.055% =0, 3123  -0.(440 T R L
-N.0983  -0.040C -0.0580 -2.1023 -0.3260 -o.ic00 - ‘ ;
-0.C818 =0,0179 =D.0252 =0.0973 -0.0126 - .4002 -, 3
=1.1028  =0.AT5L =0 .CSE2  =7,0556 0,102 -".0adn - . 4 ¥
.
COFFFICISY™ MATRTY A
"
SLLTED 1,090 =0,0372 0.0226  C.0225  0.hTT N o4 :
LCOEG 00,0055 =0.038k 0.0381 .07k G.eoio ey !
;. 037 -0.C7%& ~0.0919  1L0Z78 -0.0405 0,087 cLrtas :
veC27C =0.03G1 £.0095 =-0.5049  (.0C7S  0.C2%4  NLpoce
3.0378  7.0R67 -0,0553 05026 ~0.0275 -C.0085 T o3p
0.0205 -0.0613 =C.0082  C,1391  0.0203 -0.i0¢ e
2.0219 £ Unt76  =D.08670 7.0036  C.0297  C.029%  -0.n2l0
COEFPICTINT FATRIX A3
©.010%7  7.0097 -0.0080  (,0106  0.0057 -0.0321  0.n2RE
3,07 5.0724 -0.0201  C.C044 -0.0036 0.0299 <2C0.0100
C.Gubd  0.02%1  0,0028 0.0130 -0.0351 0.0413 =C,0018
V.8rT 0 1.004%  0.0207 -0.0083 -0.0123  0.0204 ~7.7107
£ 6240 0.0767  0.0468 -0.0072 -0.0163 <-2.0047  9.0328
Y ONSR  -N.QNG2  -0.0436 -0.0016 -0.0097 -0.0041  0.0574 a
SLEORS  UL011%  D.C14C 0.0146 -0.0234  C.0156 =0.0327 '
APFUICTEET MATRIY A4
I
,.0055 =0.0026 0.0260 =-0.0174 =-0.0208 0.0025 =32.0164
L.002% ~6.0258 =0.0109 =-0.0316 ~-0.02i1 C.0132  0.0291
.0139 -0.0148 =-0,0535 0.0129 -0.0156 ~-0.0155  0.0081
6256 © €030 =0.0015 0.0178 =-0.0187 =0.0251 =n.0173




COEFFICIENT MATRIX AS

-0.0258
-2.0126
-0.0137
-C.0357
-0.04469
£.0205
-l 0u24

-0.0080
-0.0045
0.0251
0.020¢
g0.011
0.0049
-0.0158

¢.0243
0.0573
£.0280
J2.03%6
0.0492
0.0358
0.C125

COEFFICIENT MATRIX A6

-5.0409
c.0030
CWC0039

-0.0099
0.2136

-0.2106
0.009¢0

0.0127
-0.0129
-0.D2¢&9
-C.0225
-0.0008

0.0163

0.0067

0.0017
-0.0476
-C.042

£.0379
-C.0142
-0.025¢8

C.C179

COEFFICIENT MATRIX A7

c.co2c
0.0178
-C.0077
-0.C174
-3.0201
0.0001
0.6038

COEFFICIENT

-0.0108
-0.0317

0.0206
-0.0102

0.0041
-0,0103
-0.C038

-0.0326 0.Cu2
-0.0102 0.0666
0.0076 -C.0066
-0.0298 0.C0091
-0.0255 0.0191
-0.03713 -0.0179
-0.00u2 c.0111
MATRIX A8
-0.0034 -0.0158
-0.0179 -0,0113
-0.C042 -0.0299
0.0174 -0,0062
0.0093 -C.0100
0.00317 -0.0097
0.0118 c.c025

COEFFPICIENT MATRIX A9

0.0223
0.0014
0.0027
0.0310
0.0044
-C.0006
-0.C056

0.0107
0.0044
-0.0012
0.0085
0.0091
0.0232
-0.0096

0.0203
0.0180
¢.0073
0.0433
-C.0164
0.016"
6.0093

0.0177
0.C182
-0.0072
0.0130
C.0384
-0.0074
0.C125

-0.0058
-C. 0063
D.0024
0.0147
G.2083
J.cCRy
-0, 0un7

-0.0247
-0.025¢
0.0142
-0.0282
C.0180
-0.0033
0.02712

-0.0328
-C.0009
-0.0239
-0.0u476
-0.0173

0.0097
-0.0168

0.012¢
0.00349
-0.0008
0.0056
0.0101
0.0095
0.0188

4

-C.C 1
-0.0220
3.0035
-0.00C50C
0.002
-0.0u66
-0.0039

¢.0C77
05.C150
0.0288
-6.0094
-C.0084
0.0209
¢.00086

0.0056
-G.0208
-C.01867

0.C092
-¢.0118
-0.0051
-0.02138

-C. 0495
-0.0267
-0.0192
-0.0580
-0.02C2
-0.018&3
-0.0096

0.0198
-0.01’49
0.0259
0.0125
-0.0013C
0.0329
0.039%

-0.0%4u
-C.7208°%
0.013585
C.0103
t.C138
U.0373
0.Cu089

c.0123
0.06391
0.01:72
-0.°CL7
-0.2024
0.0064
3.01C8

-0.0042
-0.0093
-0.0272
0.0388
0.0257
-0.0243
0¢,0001

C.00u47
-0.0zCu4
0.0135
0.0152
-0.0164
-0.0231
0.0017

~-0.0017
0.0238
-0.0118
¢.0076
£.0061
-0.C301
-C.0137

-3.0064
-2.0074
r,2028
-0.C01
L0174
0.0690
0.6032

-2.0184
-C.377

T.h00)
=t.0057
-C.m175
-0.C1%6
-5.C05¢

-0.C241
-0.0u49
-0.0271
-0. 0042
0.0056
-0.0134
-0.0382

-0.0077

0.C092
-0.0072
-0.C33%
-0.005C
-20.0772
-0.0467

2.03¢C7
0.01013
0.0018
0.0078
¢.C0R9
0.010u
-0.00u43




VESUTED TRIDICTION FTEON OO0 LANDT waTToY

L0384 EPRLIE N oL L. LT Lo
D.0132 G.026 BRI Lo STl LT LT
G030 c.ccez CL0TER colT2n LO0Dh A PR
2.012 Ve ll6T .02 2 N A VR .0 Ta LT
(037 Se (o1 TLlUt R OO .7 o
T.0042 ~oagt T conel . YT T. W g - R .
{23 RS A 26 < ‘

CAETR T st e e
CUBNET o~ T T . LT -,

S 7. LT e : Lo o -
O R R B L W T P .
SRA] T B B - T o - .
~5.0732  -0.02417 o=l T - -
-0.0863 0.0056 - A A -l
~0,0079 L0, UG - - - .

COEPPTIOTIM™ agmRIv gl

AR BORNE B B EAL e ST Lo .

B R R R P e B R i -7 ’

\_) N ,) .)‘ 3 i Y ,-)“ 3 ; L L . rj ;,- . _-:-v - : “.""' "_‘, N R ,_. ", oy

3.0265  -0.00s -2 - = . -~

AT e 7S BRI B -

3.018G <0 atuae 0 = - - A £
g AED Veraao T - b AR L L
CITFETOUENT #aTRIY A2
5.0.97  C.0CE3 -2,008% L2213 -0l 00.5 0 0,030 Ll
S I B N S U TR D T ¢ S A LR
1.0203 ST =0.0CT6 =0.C10% 0 =0.7700 0 0.C2% Q.0 168
DL0055 TG0 RE =L 0060 -0, 758 0,0C079 L0176 T.0047
S.020% 7 G206 CL0435 =0,0964 -0,001%  -0.0032  2.042S
©LN08 NLANe0 =0,005 LD, -0.0025 -C.0264  D.0354
Aean 30T D 009t L, -C.C192  0.0274  -0.0353

TOEPRFUCTENT MATRIY AL

1.0364 S.0%¥0 =0LC007 AP
.00 4Y 9. 0064C n.o213 -¢

L0135 -0 0048 -0,0508 32 L0158 0.0160 ~-C.
L2164 g.0v14 -0,0014 148 -0,0342 -0.0215 n7.0090
h.Nn%30  -2,0081 -0.0130 -0.0332 -C.0403 -0.0324 0.CC137
“L.N169 ~0,0347 0.0293 -0,0107 ¢.0C30 -0.0012 -0,7298
TG0 -3,007 -0.0807 . 0495 0.0 -0,0383 -0.0080

-0.0320 ¢.0015 2.0
=0T 268 2.0283 0,738
~
\

<
)
(DSRESI

N

O

>
. .
DO
—
]
<
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.

D
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COEPFICIENT MATRIX AS

-0.0102 -0.0198 0.0541 0.0081 -0.02i6 C.0146 ~-0.(C8s
-0.0012 -0.0223 0.0189 0.0209 -0.0395 ~0.00%2 -0.C065
0.0302 0.0012 0.035t -0.0275 -0.0175 €.0386 G.CCTu
-0.0093 -0.0020 0.0459 0.0180 =-~0.C090 0.0Cey  ~2,0111
-0.0200 -0.0002 0.0282 0.0263 -0.C171 .01 J.0035 :
0.0223 £.0112 0.035%6 -0.0451 -0,0540 0.0019 N.C564 {
-0.0058 =-0.0026 0.0608 -0,0198 =-0,C20" D.0C09 N. 0070

COEFFICIENT MATRIX A6

-0.0078 -0.0202 0.0131 -1,2088 0.01Cs 0.0134 -2,0255 |
0.0422 -0.0241 <-0.0163 -0.0553 C.2242 0.5336 2.0126
-0.0139 -0.0126 -0.0146 0.0115 0.001C =-C.0112 =-3,70&u
-C.Cou41 -0,0253 0.0230 -0.0C046 ¢.0116 -0.00'% -~0.0112

-0.0090 -C.0093 0.C140 2,738 ~-0.0171 -0.0098 -C.C230 |
-0.01C8 0.0039 ~-C,.0089 ¢.02C9 C.C221 0.0183 -3,0330

0.0068 -0.0110 9.0152 0.013 0,0051 ¢.02658 -0,C197

COEPFICIENT MATRIX A7

-¢.0102 0.0080 0.0017 0.0015 0.0079 0.00u6 -0,C257
0.0061 =-0.0070 0.0233 -C.0032 -0.C163 0.0026 -0.C4u40
-0.0159 0.0047 -0.0115 ¢.0072 -0.008C9 -C.03155 =-0.0099
0.0001 -0.0076 0.0234 -0.0297 -0.0191 0.0392 -0.0025
-0.0159 -0.0001 0.0258 -0.0070 0.0092 ¢.C205 0.G6219
-0.0099 -0.0085 0.0005 -0.0094 0.C016 -0.0398 0,044
-0.0179 -0.0041 n.C0082 -0.0250 -0.0023 €.0071 0.0029

COEFFICIENT MATRIX A8

-0.0385 -0.0406 0.0325 -0.0443 -0.0326 -0.0113 -C.C187
-0.0352 -0.0563 0.0052 -0,0354 -C,0C22 =-0.0284 0.0094
0.0233 0.0032 -0.0255 -0.0208 -0,0088 -0.0351 -0,0090
-0.0230 -0.0087 0.0009 -0.0382 -G.0332 0.0036 ~-C.0u43
0.2123 -0.0088 -0.0022 =-0.0015 =-0.0134 -0.0240 -0.0092
-0.0240 0.0090 -C.0066 0.0121 0.C00%2 -0.0307 C.C107
0.0015 -0.0104 0.0376 =-0.0524 ~C.0C154 0.0251 -0.0407

COEPFICIENT MATRIX A9

0.0324 0.0342 -0.02%4 0.03817 ~0.0010 -C.0090 0.024C
0.0149 0.0318 ¢.0003 0.0285 =-0.0204 0.0126 0.0125
-0.0125 0.0038 0.0088 J.0194 0.0046 0.0366 6.0027
0.0226 0.0088 0.0297 0.0280 0.0118 -0,.,00u6 0.0151
-0.0144 0.0276 -0.0103 0.0033 -0.02N 0.0097 -0.0032
0.0011 0.02917 -0.0030 0.0183 .06 -0.0314 -0,0127
-0.0106 0.0162 -0.0089 0.04Mm 0.0356 -0.0249 0.0061




Loopnniy or

YL m AR Tt uaRT OF ANALYSTS FROCENEArT |

THIS PpOSRAY 1S USED TO SELZ»T THEI PROPER ORDZR MVAR 1 ODEL ANT

SETERMINES THE COVARIANCE ANT CTEFFICIENT MATRICES FOI THAT MCDEL
C GSIVEN II NP-DIMENSICNAL OBSERVXTION VECTORS. THE HAXIHUX ORDER

“ODEL CONSIDERED IS LGOLD~'. AFTER THE FPINAL MVAR MODEL HAS

SZEN DETERMINED, THE PREDICTICM¥ ERROR MATRICES PCR VARIQUS-STEP

SORECASTS ArRT COMPJYTED BY iUB“OUTINE ERAVAR.

e =

DIMENSING GAN (7,7,10),4:7.7,10),AB{7,7,10),8(7.,7, 10,
(oeniTaom e, 9768),XHH{7),S(,,. 53 (7,71 ,55(7,7) .00 07,7
LT 10y AT, T L IO (T, T
NPz ?
VP TS THT NUMRFP NP DRZNTCTOR 7 RIASLES.
N o=
. WMZ IS THT NJNPER QT VARIADL™S <0 3E DEREDICTRED, YT I3 LT55 7o
2 ©wCAL TD NP,
LGOLD=10
- LGOLD I35 ONE MOREZ THAN THE MAYIT™UM ORDER MVAPR MODZEL ™2 =7 "ow=tr
LG=LGOLTD
IT=8768

. II IS THE NUMEER OP OBSERVATIOF VECTORS TO WHICH MVAR MODIL- &7~

C TO BX PITTED.

A FI I RIS BN R R R R R R LRSS R RS R RS R RS R RN RN EREEEAR N ENIEN
 BEFORE SUBRO'TINT RUYJONS IS CALED FOR THE FPIRST TI§T Ti7

OBSZRYATION ¥ECTURS ARZ PLACED TN ARKAY ¥ DIMENSIONEL N© BY II.
- THE NC VAFIARLES TS RE PPEDTITED ARE DENOTEDR 3Y FIRST SURESC=IDT
( T THROUGH NC IN AWRRY X WHEILE USUBSCRIPTS NC¢%1 THRCUGH NP DENDTE
o THE NP-NC VARIABLES TC PF GySED TO AID IN THE PREDICTION. OF COTR:

NP MAY EQUAL NC.

B N L N SRS Ly 2
TALL RHJONS(Y,S,A,5%,II,8°, ¥, LG,XHMN, GAM,SR, ZZ,DD,AB,B, 82,0 ,IT07

APTER THE FioST CALL T2 PHION:Y, ARRAY 31 IS SCARNED TO2 FINDZ THE

PYE MINIMIM VALUE OF ™+#% AKAIYT FPE PARAMETER BY SUBROUTINE
Yr2MIN. TYE CGFDER MCLEL TOR ¥##ICH THE MINIMUM CGCCURS IS LMIN-1,
CALL PoToMTY (539,LG,LMIN

DL (1, ) =495995,
LG=LAIN
TUBRCUTINI RYJONS IS5 CALLED AGAIN TO DETERMINE THE COVARIANCE AND

. TOEPPICIENT MATRICES OF THE MVAR MODEL WITH THE MININUM VALUE
© .F THE ARAIYZ PP® PAFAMETER. DD(1,1)=99999. PREVENTS THE
¢ PTCONPUTATION OF TYE LAG-SUM MATRICES GAM.

CALL BHJONS (X,S,A,S1,II,NP,NC,LG,XMN, GAN,SB,EE,DD,AB,B,BB,0Q, ITOT)
¢ 5UBROUTINF ERRVAR IS CALLED TO COMPUTE THE PREDICTION ERROR
C YATRICES. UPON ENTHY ARRAY S CONTAINS THE ONE-STEP PREDICTION
¢ ZPROF COYARIANCT WATRI' AND ARRAY A CONTAINS THE COEFFICIENT
( =ATRICES. THE PREIDICTION TRROB COVARIANCE MATRICES ARE
L . TUHNED IN ARRAY BB,

CALL ERRVAR (A,B,S5,BR,NP,LG)

STOP

END




conOnnOnoattann '

OoOn

SUBROUTINE RHJONS (X,S,A,S1,II,NP,NC,LG,XMN,GAM,SB, EE, DD,AB,B,BB, 2
1 , ITOT)
3 idKOUTINE RHJONS CONPUTES THE COEPFICIENT MATRICES AND DETERMINES TH
PROPER ORDER FOR A MULTIVARIATE AUTOREGRESSIVE (MVAR) MNODEL. ON THE
FIRST CALL TO RHJONS, NP TIME SERIES EACH OF LENGTH II ARE INPUT INIC
ARRAY X. THE FIRST NC TIRE SERIES ARE THOSE TO BE PREDICTED. LG-1 IS
THE MAXINMUM ORDER MVAR PROCESS TO BE PITTED TO THE DATA. THE MEAN OF
EACH TIME SERIES IS COMPUTED AND STORED IN XMN. THE AKAIKE PPE ARE
COMPUTED AND STORED IN S1. AFTER THE FIRST CALL, S1 IS SEARCHED FOR
ITS MINIMUM VALUE AND THE INDEX OF THAT VALUE. ON THE SECOND CALL TO
RHJONS, DD (1,1) IS SET TO 99999., AND LG IS SET TO THE INDEX OF THE
MINIMUM YALUE IN S?, AFTER THS SECOND CALL THZ COEPPICIENT MATEICES
FOR THE LG-1 ORDER MVAR PROCESS ARE A (NP,NP,2), A(NP,NP,3), . « « ,
A(NP,NP,L3)., THE ONE STEP PREDICTION COVARIANCE RMATRIX IS S.
DINENSION GAM (NP,NP,LG),A (NP,NP,LG) ,AB (NP, NP, 1G), B{NP, NP,LG)
DIMENSION BB(NP,NP,LG)
DIMENSION X (NP,II),XMN(NP),S (NP,NP),SB(NP,NP),EE(NP,NP),DD (NP, NP)
DINENSION Q (NC,NC),S%(LG),ITOT (NP,NP)
DIMENSION WORK{1000)
XII=II
W HEN DD(1, 1) EQUALS 99999. THE LAG-SUM MATRICES GAM NEED NCT
BE COMPUTED. MISSING OR BAD DATA IN ARRAY X IS DENOTED
BY THE VALUE OF -100.
IF(DD (1, M <EQ.99299.; G0 TC 123
bo 1900 I=1,NP
YMN(I) =0.
ITOT(I,1)=0
DO 1900 J=1,II
IP(X (I, J) .EQ.-100.) GO TO 1900
ITGT (I,1)=ITOT (I, 1) +1
XMN (I)=XNMN (I) +X(I,J)
1900 CONTINUE
DO 1907 I=1,NP
XMN (L) =XEN (I) /ITOT (I, 1)
DO 190t J=1,1I
IF(X (I,3) . EQ.-100.) GO TO 1901
X (I,J) =X (I, J) ~XNN (I)
1501 CONTINUE
DO 100 I=1,NP
DO 100 J=1,NP
DO 100 K=1,LG
100 GAM(Z,J,K)=0.
DO 61 L=1,LG
DO 61 I=1,NP
DO 61 J=1,RKP
ITOT (1,J)=0
DO 62 K=L,II
K1=K-1L#1
IP(X(I,K)«EQ.-100..0R.X(J,K1).EQ.-100.) GO TO 62
ITOT(I,Jd)=ITOT(I1,J) +1
GAM (I,J,1)=GAN(I,J,L) ¢X (I,K)*X (J,K1)
62 CONTINUE
GAN(I,J,L)=GAB(I,Jd,L)*{II~-L+1)/ITOT (I,J)
61 CONTINUE
123 CONTINUE
Do 17 I=1,NP
DO 17 J=1,NP
A(X,J3,1)=0.
B‘I.J,1)300

R




AB({l,4, 1)=0,
Be{i,J,1 =0,
CONTINUE
nC 7 1=1,NP
B{1,1,1)=1,
A(L,1,1)=1.
BP(I,I, N =1.
AB(I,I1,1)=1,
DO 7 J=1,NP
5(1r,J)=caM{r,J,mn
SB(I,J)=S(I,Jd)
7 CONTINUE
JFP( LG +LE. 1 ) GO TC 124
DO 8 L=2,LG
NL=1%-1
IF(NC.RC.EPY GO T0O 20
DO &1 T=1,NC
no 21 J=1,NC
<Y L1, =S5 {1,
CALL MATINV{J,NC,DET)
S1{NL)=DET
20 CONTINCE
CALL MATINV (S,NP,DET)
IP(NC.NE.NP) GO TO 22
S1{NL) =DET
22 CONTINUE
CALYL MATINV{SB,YT,DET
LC 9 I=1,M4P
DO 9 J=1,NPD
DD (X,<) =0.
EE({I,J) =0.
DO § k=1,NL
K1=L-x+1
DO 9 T71=1,NF
EE{XI J¥Y=EZ (7, ) -R2
DD({I, N =D (X, -3¢
Q CONTTNOR
"o 17 T=1,NF
DO 11 J=1,NP

-3
~J

LI1,7YXGAM(J, X1, K1) i
I1,Y “GAN{I1,Jd,K1)

A{I,J,7)=A(I,J,L)+DD (I,K)*SB (K,J)
11 AB(I.J.L)=AB(I,J,L) $EE(I,K) *S(K,J)

IP (L.EQ.2) GO TO 12

DO 13 K=2,NL

KN=L-Re 1

DO 1) I=1,NP :

D0 i3 J=1,NP

A(Z,3,K)=B(I,Jd,K)

AB(T,J,K)=BB(I,J,K)

DO 13 K1=1,NP

A(X,J,K)=A(I,J,K)*A(I,K1,L)¢BB(K1,J,KN)
13 AB(I,J,K) =AB(I,J,K) +AB(I,K1,L)*B(K1,J,KN)
12 CONTINOE

DO t4 I=1,NP

DO 14 J=1,NP

DO 14 K=1,L

B(1,J,K)=A(I,J,K)
14 BB(I,J,K) =AB(I,J,K)

46

-
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124

778

200

201

18C0

77

78

DO 15 I=1,NP

DO 15 J=1,NP
S(I,J)=GAM(I,J,1}
SB(I,J)=GAM (I,J,1)

DO 15 K=2,L

DO 15 R1=1,NP
S(I,J)=5(I,J)+A{I,K1,K)*GAN (J,K1,K)
SB(I,J) =SB (I,J)*AB(I,K1,K)*GAN(K1,J,K)
CONTINOE

CONTINUE

DO 778 I=1,NC

DO 778 J=1,NC
Q(I,J)=5{I,d)

CALL MATINV(Q,NC,DET)
S1(LG) =DET
WRITE(6,1800) S°

DO 200 I=1,L1G
P1=II+{I-1) *NP+1
F2=II- {I-1)*NpP-1

P12= (P1/F2) **NC
S1(I)=S1(I)*F12

SP=51 (1)

Do 201 I=1,LG
S1(I)=51(I) /SF

WRITE (6,18C0) S1?

FORMAT (2X,'S1', 10E12.4)
po 77 I=1,L1lG
IF{S1(I).LE.O.) S1(I)=1.
S1(I)=AL0OG10(S1(I))
PN=II- {LG-1)*NP~1

DO 78 I=1,NP

DO 78 J=1,NP
S(I,J)=5(1.J)/FN
RETURN

END

- oAU < - AL AT




P73 o TTANE PoRAIN(SY,LG, LMIN)
- ;2. LNZ SEARCHES THE VALUES OFP THE AKAIKE FPE PARAMETTF- .
SONTATNED IN ARBAY S1. THE MINIMUM IS POUND AND THE ARRAY
.- LUiCR® IS5 LodOTED bY LMIN., THIS CORRESPONDS TO AN MVAR Mo
OKDER 7 LMIN- 1.
DIMENSION 51 (LG)
SMIN=1. ES50
20 1 1=1,L6
IT{C° (I;.GT.3%IN) GO TO 1
LHIN=I
SULA 31 (D)

~nee v -
k\n.J.! &

lau

CRITI 5% LETN, S (LEIN)
5 103“51¢ A TLAIN, PRERINY,T5,E13.5)

5 FOQHATISK,Siﬁj.D)
8ETVn
END

SUBROUTINE MATIANV (A,M,DET)
¢ THRIS CUBROUTIML COMPUTES THZ INVERSE MATRIX OF M BY M MATRIY
- A ANDT RZETGRNS THI INVERSE IN A, THE DETERMINANT CF A IS
- RETURNCD IN DET.

cINLAIUN A, N

DET=1.¢C
D01 S,
PYT -2 (J,3)
DEI=DLI®PVT
A(v,u I
DO ¢ L= 3,'.“;
2 A{S,K,=a(3, K 72VT
b 45 \“:_,'“A
TR 43 3,12
3 T=A({K,J)
Mt G
SC 4 L=,k
4 A{K,un~;‘K,L>"A(J:L)‘T)
I CONTISGZ
RETULS
END

w




1. PILJrAY Is USLD TC MAKE 3, 6, 4, AND 12 ECUF MVAT FORECASTS
L Ty Ju¥PUTE THE &0% CONFIDENCE INTRRVALS 70 KL PLACED aBOUT
D4 ANL CLSDATE THE FORECASTS wiTa TES "‘UAL CESZXVATIONS VALTID ‘
TiF FITECAST TIME,
DIMTNSION XMN(T7) ,A(7,7,10) K7D (7, 7),ynar(7 13) ,DED(T),
] TLAT(T,4) ,EDAT(7,9) LV (7,7),NV (7,7, ,),b(,,7 ¢y,
- Fii(7,4) ,FLC(7,4) ,ZTOMN(T), 4 Qj“h(7 Y L uMCNN(T, 12)
CIAnoIUN IVAFN(28) ,ISTAX(21)
CAIA ISTAN/4HHANN,UKOVEER, 4i JULHIETM, 4HIN  , UH
1 4HBCIZ,4HINBU,UHRAG L4HRRAU, 4HN:L LJUHNEDG,UdYASD,
L wHIZUUR,HG JUHWERN,UHIGER, 4iCLZ ,L 44525, 4ASEN , 48 /
FATh IVALN /u41g- L UWHCLD ,LULAYE,4ii: T, d4d4CTIL,4HING ,
1 4EuT ek JUHTFMP,UHERAT, GilUR: 4.l ,ud Ui .
¢ wa et ,uHIISI,“HEILI,ddIY LU JUEU-WI, 4HND , 3
3 4y L4 JUHV=%I 4END Ui , 4 / .
FEVAR Io THZI VARIABLE NUMBER...1=HEIZGHT OF FI2ST CICUD LAYEF, '
2=CLILING 4IIGHT, 3=TIMEERATUPE, 5=VISIHILTTY, €=U-wIND, AND
7=V-nI\J. NP 15 THF NUMBE2 OF PR®FDICTCR VARIABLEFS, LG 1s ToF }
OrDIR OF THI MVAR MCDLL PLUS CNE. %4JS, FY53 h 9TE CRIDEE MODZL
L3 wCJLD TQUAL 10. -
?ZAL(B,;C1) KVAR,NP,1IG
201 FORGAT 1018)
u .1" 5 ‘1
Lo s=LG-2
LGE3=1G+3

e oty £

’

{4E XEAN VECIOK, CNE-STEP PREDICTION I%ikCh COVARIANCE MATRIY,
AND THE COEFFICIENT PATRICES FOk IdEi XVak 4CDEL BFI GIAD IN
MELZZ. [HD SAMPLY® MEAN VECTOR, WHICH IZ DEITRMINEIL AND REMCVTL 'y
3ZFULI THD LAG-SUM MATRICES AKEI CC4PUTED, Is fiAl INTO APRAY
@i.  Tii CCVAEIANCE MATRIY IS5 ETAL INTJ ARRAY V AND THE
COEFFICIINI MATRICEZS ARE READ INTC AriAY ARD AND IHIN PLACED
X AFZAY R, A(I,J,1) WILL ALWAYS DI THI IDEINTITY MATFIY WHILE 1
CCDFFICIENT MAIRICES A1,A2,A3,... WILDL 2E PLACED IX A(I,J,2), {
A{I4ds3)#X(1,5,4) 4ees, RESPECTIVELY,
R2AU(5,200) XNMN
T TUAMAT (TF11.5)
HIAL (D, <00) ({V(I,J),d=1,7),I=1,7) 'y
DO % L=1,L6
®ZaD(5,209) ((RED(I,J),Jd=1,7),1=1,7) '
DC S I=1,N8P '
LG 5 J=1,54P
5 A{I,Jd,L)=ARC(I,J)
IF Tuaf VARIABLE IS TEMPERATURE, THL GRAND MZANS, HOUFLY MEANS :
ANL 40N1#LY MEANS WHICH WERE PEMCVED JEFCREZ THEL MVAR MODEL '
»AS DETIRMINED, MUST BE READ IN HERE SC THaT THTY MAY BE !
ADLEC EACK TO THE FCFRECAST VALUZS.
IF(KVAR.Y¥E.3) GO TO 110 ;
READ(S5,1C1) ZTCMN i
READ (5,171) ((XHEMN(I,J),I=1,7),3=1,3) ;

FIAL(5,101) ((¥MCMN(T,J),I=1,7),J=1,12)

1.1 FORAAT (TFB.3)
5 CONTINUT
CAlL LSRVAFR (A,E,V,VV,NP,LG)

| THL GRorRVATIONS 70 BE USED TO MAKE AN VARIFY THE FOTECASTS
AET 2EAL IN HEFZ. IT IS ASSUNED THAT IHE CONTRIBUIION OF

| THD iJOUELY AND MONTHLY MEANS HAVE 2SN nELOVED BEFFCRE THE

: TEXESRATUEE DATA HAS BEEN KEAL IN ANL THAT TRANSECEMTD

; VISI"ILITY AND CLOUD HEIGHT VARIABLES ART TC BE FEAD IN.
ARTAY YUAT I3 CIMENSIGNED NP EY LG43, TiZ C3SERVATION TO

. 49




b MIARTL OWITH OTHE 12-HOUP FOFRXNCALT IS CONTAINELD IN ELEMFUT
o (I, TV OBGLLVATION VALLID AT THE ZZ3C FOFZCAST TIME
CO W UNTAINED O IN YZSAT(T,5), AND THE CrIETEVATION FARTAZIT IN
N TAZL Ib CONTAINET IN YDRT(I,LG+3).
None By Z20) ((EDAT (1,0, I=1,NF),3=1,L583)
Do 1L I~1,x'
DA N R PR
i. AT D, C) YLAT{I, Ly =X XN {T)
DDoLC TEC3T=EY, U
LO(IfisTeLea1)y GO To 21
Svoce IS1,587
oo 3=, L0602
¢ UDAT (L, LG=T) TRBAT (I, 16M1-0)
NI T Y =TLAT L IFCET-)
- LU NIINGC
SNTTETE
PR :—"‘3, Vi
LUATH(T, IV STy -
o 4o L-=1,L541
LoD =, Nl
SO FDAT{Z,IECST) sFLOAT(I,IFCSTY -2 (2,0,041)*{DAT(C,1)
T LINWTTN L
IO (AVAL L NEL3) GC TO 218
Tah opdUs AND O MONTH CF TBE FORTCASI ZE00 1IMT A-Z rRAD IN
STTTOCHILY FOL TEIMIIRATURI 50 THAT THI MUNTALY aNLD HOURLY
TANS TAN 3T RIDIC OFACK IN. IuTrv=1 FoL N0Z, IhkE=< FOT 337,
ces g LEERT: F0a 25, LECEF=1 FCTOJANUALY AND IM0T=1l FOC

Teul
RIS
v (2,3)=FLAT (I, ) #EHEY N (2, IHE) +X LAN(I,IIU)-X'O“N(')
SEAL I, = DT (I, S d) 4NN (I, THE) 4 ZACAN (2, IVC) ~ZTOMN (D)
" CIUT LN E
oo seo L=,
P N R
\ SLATH{I,S) CFLAT{I,J)+¥MN(I)
| OIS AT (VY I42,3) )
‘ LI{L, Y EESAT{I,T)+1,28%3D
cLC(Il,S)FF AT ~1,28%5D
I;HK:KVA:

ITHIL R WGTe 2o AV ICHKLNELS) GO TI0 30

(VLY 3

1
—
v 4
e

‘
L)
vy
3
.
C,

X¥UL™=2000.
TAT{I,I).LELC.y FDAT(I,I)=1.E-
'.-(.,u) ob...(,-) FEI(LI,d)=1,E-13
:{I1,J).Lx.0.) FLO(I,J)=1,E8-13
(-,J‘:-‘WUL”‘KLOG(FDA-(‘,J))
FLO (1,4J)
£

n;

L S
YRR PN

L TR 5

[T t) "1

[
P
LR {‘-X— —— =

1

~~(*'U)
Fd 1,J)==X¥ULT*ALOG (XLO)
r“u(‘,d)z‘AHULI‘A 0G {AHI)
F(FLO(L,J).L1.C.) FLO(I,J)=C.
iJ\'(L,S J) =-XMULT*ALCG(YDAT (1,5-J))
3¢ CONTINGE
KV 1= (FVAE=1)%4e
50




KVe=rVvie3
anITE(6,900) (IVARN (KV),KV=KV1,aV2)

FCT FUERMNAL (/24X UALY)
U0 el :—1,NP
I811= (Z-1) %341
i5Ie=IS5T1+2
WPITE(0,901) (ISTAN(IST),IST=I571,I5T2)
901 FURRAT (/2% , 3AL/)
WTTITE(6,41) T, (FUAT(I,d),d=1,4), (Y347 (1,5-01,071,¢)
41 FUSLAI(LY, TT=', 15,0 FCST,UET3.5,0 ACTIALY, 401500
WIITT(n,4¢) (FLC(Ied),d=1,4), (FHI(I,),d=1,4)
G, FuilkaTl (4x,Y .83 LCY',4E13. 5 BT 4Iv,Uu213,9)
4O CONTINT®
Sie?
NI

S92LULTING EREVAR(A,B,V,VV,NP, L)
STMELSION V(NP,HP) ,A(ND,NP,LG) T (N0, N, 15) ,VV (M, NP,

¢ 1Y I=1,NP
20 1 J=1,NP
T VvV (I,d, |)f\l (1,J)
LoM1I=156-1
NG oo L=1,LGN¥1
D7) o 1=T1,NP
oo J=1,NP
piow L¥=1,L
I (Lh.GTLY) GO TC 7
E{I,J,l)=~A(I,d,L¢T7)
GC T n
7 CONTINTE
vu o on KA=1,NE
B 3(I,d,L)=8(L L) -L(I,KK,LK-1)*A(dK,J,LK)
o CONTIXNUZ
re 10 L=2,LG
Do 10 I=1,NP
p2 1 J=1,NF

VV (Zed,L)=VV(I,J,L=1)
20 10 ¥K=1,KP
D0 10 LL=1,ND

T~
-~ 3

17 vV (I,Jd,L)=VV{I,J,L)+8 (I,KK,L=1)*Vvy(%<,LL, 1 *8(Jd,LL, L-1)

"'U ah

.
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FLOWCHART QOF ANALYSIS PROCEDURE

initialization

| R )
Refore anv suhroutine ceils: I1 is the number of NP- |
i dimensiona’ observation vectors an MVAR model is to ’
i be found fcr, the maximur: order model to be tried is '
t (G-1, the array X dimersiored NP by II contains the

i observation vectors. .

|

‘st Call of Subroutine RHJONS h

; , . 1 '
WAR mnde’,, 2f order zerc to order LG are fitted to |
tre T2 NO-Lsmersicral ohservation vectors., The {
values nf ~n~ Akaike 7°Z rarameter are storec in ;

I array 5. ) .
i )

Call Subroutine FPEMIN

Array S1 is searched for the minimum value of the
FPE parameter. Array e’ement LMIN denotes the
minimum and LMIN-1 is the order of the MVAR model.

— =" -7

end Cal? ¢f Subroutine RHJONS

| Ar MVAR mode’ of order iMIN-1 is fitted to the II

( NP-dimensional observation vectors. The one-step

" oredizticn errcr covariance matrix is contained in

] array S oand the coefficient matrices in array A. 4J

Call Subroutine ERRVAR

Srediction error covariance matrices for various 3
step forecasts are computed and contained in array 3

nn
D
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